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ABSTRACT

We discuss recent theorems proving that artificial neurai networks are
capable of approximating an arbitrary mapping and its derivatives as
accurately as desired. This fact forms the basis for further results
establishing the learnability of the desired approximations, using results
from non-parametric statistics. These results have potential applications in
robotics, chaotic dynamics, control, and sensitivity analysis (physics,
chemistry, and engineerir'lg). We discuss an example involving learning the

transfer function and its derivatives for a chaotic map.
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Jordan (1989), "Generic Constraints on Underspecified Target Trajectories,”

Proceedings IJCNN, Washington D.C.:

The Jacobian matrix 92/0x . .. is the matrix that relates small changes in the
controller output to small changes in the task space results and cannot be
assumed to be available a priori, or provided by the environment. However,
all of the derivatives in the matrix are forward derivates. They are easily
obtained by differentiation if a forward model is available. The forward
model itself must be learned, but this can be achieved directly by system
identification. Once the model is accurate over a particular domain, its
derivatives provide a learning operator that alléws the system to convert
errors in task space into errors in articulartory space and thereby change the

controller.
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* We are indebted to Angelo Melino for pressing us on the issue addressed here and to
the referees for numerous helpful suggestions. White’s participation was supported by
NSF Grant SES-8806990.
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ABSTRACT

We give conditions ensuring that multilayer feedforward networks with as few as a
single hidden layer and an appropriately smooth hidden layer activation function are -
capable of arbitrarily accurate approximation to an arbitrary function and its derivatives.
In fact, these networks can approximate functions that are not differentiable in the
classicAl sense, but possess only a generalized derivative, as is the case for certain
piecewise differentiable functions. The conditions imposed on the hidden layer
activation function are relatively mild; the conditions imposed on the domain of ‘the
function to be approximated have practical implications. Our approximation results
provide a previously missing theoretical justification for the use of multlayer

feedforward networks in applications requiring simultaneous approximation of a function

and its derivatives.
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Relevant Application Areas:
1. Robotics

2. Chaotic Dynamics

3. Control

4, Sensitivity Analysis (Physics, Chemistry, Engineering)



Intuition suggests that networks having smoeth hidden layer activation functions
ought to have output function derivatives that will approximate the derivatives of an
unknown mapping. However, the justification for this intuition is not obvious. Considér
the class of single hidden layer feedforward networks having network output functions -

belonging to the set

G)={g: R — R gix)= 3 B;GE"y):
j=1

xe R',Bje R,yje R™'j=1,.,q,qe€ NN},

~ where x represents an r vector of network inpdts (re N={1,2,.),%x=(,xD)T
(the superscript T denotes transposition), 3; represents hidden to output layer weights
and 7y, represents input to hidden layer weights, j = 1,..., g, where ¢ is the number of
hidden units, and G is a given hidden unit activation function. The first partial

derivatives of the network output function are given by

q ~ .
dg(x)/dx; = 3 B;viDGGE'y)), i=1,...r,
j=1

where x; is the ith component of x,7;; is the ith component of ¥j, i = 1,..., 7 (¥j¢ is the

* input layer bias to hidden unit j ), and DG denotes the first derivative of G.
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Figure 2

Single Hidden Layer Feedforward Network
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Outline:
1. Mathematicai Background
2. Approximation Results
3. Learning Results

4. Example: Learning Chaotic Map
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1. MATHEMATICAL BACKGROUND

Let U be an open subsct of IR, and let C (U) be the set of all functions continuous
on U. Leta be an r-tuple@ = (&1, . . . .a,)7 of non-negative integers (a "multi-index").

If x belongs to IR", let x& sx‘f‘ “ x‘,x’. Denote by D? the partial derivative
olelox® = alelox T ax‘2"2...ax‘,’" )

of order |a|=a;+aQz+..+a, For non-negative integers m, we define
C™(U)=(fe CU): D®fe C(U)foralla, || <m}and C™(U) = N1 c™U).
We let D0 be the identity, so that C%(U) = C(U). Thus, the functions in C™(U) have
continuous derivatives up to order m on U, while the functions in C™(U) have
continuous derivatives on U of every order. We shall be interested in approximating
elements of C ™(U) using feedforward nciworks. When U # IR, the fact that network
output functions (clements of 2(G)) will belong to C™( IR") necessitates considering
" their restriction to U, written g |y for g in ¥(G). Recall that g |y(x) = g(x)forxin U

and is not defined for x not in U, thus g |y € C™(U), as desired.)



DEFINITION 2.1: Let U be a subset of IR, let S be a collection of functions f:
U — IR and let p be a metric on S. For any g in Z(G) (recall g: RR" — IR ) define
the restriction of g to U, g |y as g jy(x) = g(x) for x in U, g |y (x) unspecified for x
notin U.

Suppose that for any f in § and € >0 there exists g in 3(G) such that '
p(f, 81v) <€. Then we say that Z(G) contains a subset p-dense in S. If in addition

g |y belongs to S for every g in Z(G), we say that Z(G) is p -dense in S. o

DEFINITION 2.2: Let m, l€ (0)U IN, 0<m </, and U c IR" be given, and let
S « CY). Supposc that for any f in S, compact K < U and € > O there exists g in
3(G) such that max g <, Supy e x | D%f(x) —D%g(x) | <. Then we say that
3(G) is m-uniformly dense on compacta in S. a

When %(G) is m-uniformly dense on compacta in §, then no matter how we choose
an fin S, a compact subset K of U, or the accuracy of approximation € >0, we can
always find a single hidden layer feedforward network having output function g (in
Z(G)) with all derivatives of g |7 on K up to order m lying within € of those of fon XK.

This is a strong and very desirable approximation property.
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The space Lp(U,u) is the collection of all measurable functions f such that
1, v, = [IU | £ 1Pdu]"P < o0, 1<p < oo, where the integral is defined in the
sense of Lebesgue. When {4 =4 we may write either ‘[U fdA or IU f(x)dx to denote
the same integral. We measure the distance between two functions f and g belonging to
L,(U, ) in terms of the metric pp, y,u(f, 8) =] f - & |lp, v,u. Two functions that differ
only on sets of L -measure zero have pp, y,u(f; 8) = 0. We shall not distinguish between

such functions.

The first Sobolev space we consider is denoted S z‘(U ,i1), defined as the collection
of all functions f in C™(U) such that | D% f|, v,y <o forall | & | <m. We define

the Sobolev norm || f |lm, p, u.u = (X, , | SmHD"‘f"",U,‘u)l’p. The Sobolev metric is

Poulf; g)E“f"gum.p.U.y Y f.8 € SpU,).

Note that p ,’?, u depends implicitly on U, but we suppress this dependence for notational
convenience. The Sobolev metric explicitly takes into account distances between
derivatives. Two functions in S;'(U, 1) are close in the Sobolev metric p pip When all

derivatives of order 0 € | @ | £ mare close in Lp metric.
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We also consider the Sobolev spaces
Wz'(U)E {fe L)l Ffe Lp(U,ﬁ.),OS la | <m}.

This is the collection of all functions having generalized derivatives belonging to
L,(U,A) of order up to m. Consequently, Wz (U) includes Sp(U,A), as well as
functions that do not have derivatives in the classical sense, such as piecewise
differentiable functions.

The norm on W},"(U ) generalizes that on S z"(U,/l); we write it as

flmpu=C X [®FI8,u2)? fe WGU).
la

1<m

For the metric on W'(U) we suppress the dependence on U and write

pre)=lf-glmpu f8&e Wy

Two functions are close in the Sobolev space Wp'"(U ) if all generalized derivatives are

close in L,(U, 4) distance.
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Our results make fundamental use of one last function space, the space CT ( R")
of rapidly decreasing functions in C=( IR"). CT( IR") is defined as the set of all
functions in C=( IR") such that for all multi-indices & and B, xBD® f(x) - 0 as
| x | =00, where xB Exﬁ’*xgz..xﬁ" and | x| =max;<;<, Ix; |. Note that

C§( R")cCT( R').

Desired results:

1) 3(G)is m-uniformly dense on compacta in CT (IR"), Sy (U, )
2) Z(G)ispp y-dense in SP(R", )

3) Z(G)ispp-dense in Wp'(U)
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2. APPROXIMATION RESULTS

THEOREM 3.1: Let G # 0 belong to ST'( IR,A) for some integer m 2 0. Then Z(G)

is m-uniformly dense on compacta in CT( RR"). O

DEFINITION 3.2: Let [ € {0}u IN be given. G is l-finite if G € C'( IR) and.

0<[I1DIG1dA < O

LEMMA 3.3: If G is I-finite then for all 0 < m < I there exists H € ST( IR,A),H #0,

such that Z(H) c Z(G). O

I-finite activation functions G with ID'G dA # 0 have Jl |[D™G| dA =eoforall m < |,
and for m > [ all [-finite activation functions G have ID'"G dA =0 (provided D™G

exists).

It is informative to examine cases not satisfying the conditions of the theorems. For
example, if G = sin then G € C*( R), but for all [, [ | D!G 1 dA = . f G is a

polynomial of degree m then again G € C*( R), but for /<m we have

I | DIG | dA = oo, although J- | D!G 1dA =0 for I >m. Consequently, neither

trigonometric functions nor polynomials are /-finite.
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COROLLARY 34: If G is I-finite, then for all 0 < m < I, 5(G) is m-uniformly dense

oncompactain CT( RR"). O

COROLLARY 3.5: If G is I-finite, 0 S m </, and U is an open subset of IR" then

¥(G) is m-uniformly dense on compacta in Sp'(U,A) for 1< p <ee. O

COROLLARY 3.6: If G is I-finite and ¢ is compactly supported, then for all 0Sm <1
X(G) < SP(R’, ) and E(G) isp fry-dense in SF'(R”, ).

COROLLARY 3.8: If G is I-finite, 0 < m < I, U is an open bounded subset of RR" and
Cg ( IR")is p™-dense in W (U) then Z(G) is also p 7'-dense in Wp'(U).

Thése fesults rigorously establish that sufficiently complex multilayer feedforward
networks with as few as a single hidden layer are capable of arbitrarily accurate
approximation to an unknown mapping and its (generalized) derivatives in a variety of
precise senses. The conditions imposed on G are relatively mild; the conditions required

of U have practical implications.
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Figure 1. Feedforward Network

Q input unit & multiplication unit
GQ activation unit @) addition unit

Note: biases not shown
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Figure 2. Derivative Network

QO input unit X multiplication unit
GQ activation unit @ addition unit
DGQ activation derivative unit

Note: biases not shown
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ABSTRACT

Recently, multiple input, single output, single hidden layer, feedforward
neural networks have been shown to be capable of approximating a nonlinear map
and its partial derivatives. Specifically, neural nets have been shown to be dense
in various Sobolev spaces (Homnik, Stinchcombe and White, 1989). Building
upon this result, we show that a net can be trained so that the map and its
derivatives are learned. Specifically, we use a result of Gallant (1987b) to show
that least squares and similar estimates are strongly consistent in Sobolev norm
provided the number of hidden units and the size of the training set increase
together. We illustrate these results by an application to the inverse problem of
chaotic dynamics: recovery of a nonlinear map from a time series of iterates.
These results eitend automatically to nets that embed the single hidden layer,

feedforward network as a special case.
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3. LEARNING RESULTS

SETUP. We consider a single hidden layer feedforward network having network

output function

X T.
gk, 0) =Y B;G(x'y))
j=1

where x represents an r X 1 vector of network inputs (including a "bias unit"), Bj
represents hidden to output layer weights, y; represents input to hidden layel_'
weights, K is the number of hidden units,

6"=(B1.71:B2.72,- B, 7K)
and G is the hidden unit activation function.

We assume that the network is trained using data ({y,, x;,} generated

according to

y =8 (%) +e t=1,2,..,n

x, denotes the observed input and e, denotes random noise. The number K, of
hidden units employed depends on the size n of the training set. The network is
trained by finding gx_ (x, é) that minimizes
1 x» K
@)= X I z_: BiGUT T,

t=

subject to the restriction that gk, (x, 6 ) is a member of the estimation space G.
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REGULARITY CONDITIONS:
Input space. The input spdcc X is the closure of a bounded, open subset of R".

Parameter space. For some integer m, 0 <m < o, some integer p, 1<p <o, and

some bound B, 0 < B <, g"* is a point in the Sobolev space Wn+(rip]+1,p, x and

"g* m+irip1+1, p. x <B.

Activation function. The activation function G belongs to C™(IR) and
I“(d”‘/du"‘)G(u) du <. See Section 3 of Hornik, Stinchcombe and White

(1989).

Estimation space. gK»(x,é) is restricted to G={g: |8 lm+ripi+1,p, xS B} In

the optimization of s,(g).

Training set. The empirical distribution of {x;}7=; converges to a distribution

p(x) and u (0) > O for every open subset O of X.

Error process. The errors (e} are independently and identically distributed with

common probability law P having LeP (de)=0 and O SL e2P(de) < .

(Le 2P (de) = 0 implies ¢; = 0 for all .)

80



Independence. The probability law P of the errors does not depend on X }r=1;

that is, P(A) can be evaluated without knowledge of (x}7-1,

1im,,_,‘,,(1/n)2:‘___1 Xy, etc.
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THEOREM 1. Under the Regularity Conditions

limllg*"gK,(',e)"m,oo,x=0 almost surely
n—yoo

provided lim,, . K, = o almost surely. In particular,

lim olgx,(x, 8)1 =0(8") almost surely
n—o0

provided o is continuous with respect to |- [|m, «, x * O
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4. EXAMPLE: LEARNING CHAOTIC MAP

Our investigation studies the ability of the single hidden layer network

K
gxk(Xi—5 o .., %-1)= Y, BiGWsjXt—5 +* * + 71 X-1 +Y0j)
j=1

with logistic squasher
G () = V[1 + exp(-u)]

to approximate the derivatives of a. discretized variant of the Mackey-Glass

equation (Schuster, 1988, p. 120)

0.2)x; 5
-5, Xg—1) = X 10.5) | —— - (0.1 | .
g(xi-s, %-1) = %1 + (10.5) L+ (50 (0.1)x,1 |

The values of the weights 3 j and ¥;; that minimize

1 n
Sn(gK) = ;— z [xt —gK(xl—S 3 ey xt—l)]2
t=1

were determined using the Gauss-Newton nonlinear least squares algorithm. Our
rule relating K to n was of the form K ec.log(n) because asymptotic theory in a
related context (Gallant, 1989) suggests that this ié likely to be the relationship

- that will give stable estimates.
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Impact of Application of Fuzzy Theory to Industry

(Paper not provided by publication date.)
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Time-sweeping Mode Fuzzy Computer -- Forward and Backward
Fuzzy Inference Engine

(Paper not provided by publication date.)
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